Dense admissible sequences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dense admissible sequences

A sequence of integers in an interval of length x is called admissible if for each prime there is a residue class modulo the prime which contains no elements of the sequence. The maximum number of elements in an admissible sequence in an interval of length x is denoted by %∗(x). Hensley and Richards showed that %∗(x) > π(x) for large enough x. We increase the known bounds on the set of x satisf...

متن کامل

Dense Admissible Sets

Call a set of integers {b1, b2, . . . , bk} admissible if for any prime p, at least one congruence class modulo p does not contain any of the bi. Let ρ ∗(x) be the size of the largest admissible set in [1, x]. The Prime k-tuples Conjecture states that any for any admissible set, there are infinitely many n such that n+b1, n+b2, . . . n+bk are simultaneously prime. In 1974, Hensley and Richards ...

متن کامل

Posets from Admissible Coxeter Sequences

We study the equivalence relation on the set of acyclic orientations of an undirected graph Γ generated by source-to-sink conversions. These conversions arise in the contexts of admissible sequences in Coxeter theory, quiver representations, and asynchronous graph dynamical systems. To each equivalence class we associate a poset, characterize combinatorial properties of these posets, and in tur...

متن کامل

On Cobweb Admissible Sequences - The Production Theorem

In this note further clue decisive observations on cobweb admissible sequences are shared with the audience. In particular an announced proof of the Theorem 1 (by Dziemia´nczuk) from [1] announced in India-Kolkata-December 2007 is delivered here. Namely here and there we claim that any cobweb admissible sequence F is at the point product of primary cobweb admissible sequences taking values one ...

متن کامل

DENSE INFINITE Bh SEQUENCES

For h = 3 and h = 4 we prove the existence of infinite Bh sequences B with counting function B(x) = x √ (h−1)2+1−(h−1)+o(1). This result extends a construction of I. Ruzsa for B2 sequences.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2001

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-01-01348-5